
Square body demonstrates powerful downsizing capacity.

JIG CYLINDERS C SERIES

New Line-Up Includes ϕ 6 [0.236in.], ϕ 8 [0.315in.], and ϕ 10 [0.394in.]


For a greater selection in response to needs for miniaturization, 3 new bore sizes at ϕ 6, ϕ 8, and ϕ 10 have been added, increasing the range of sizes to choose from.

Standard Cylinders *ф*6 [0.236in.]~*ф*100 [3.940in.]

Non-rotating Cylinders *φ*6 [0.236in.]~*φ*10 [0.394in.]

Double Rod Cylinders *ф*6 [0.236in.]∼*φ*100 [3.940in.]

The Jig Cylinders C Series Includes the 9 Types Shown Below.

Double Rod Cylinders

p.180 Lateral Load Resistant Cylinders

Mounting Brackets

Tandem Cylinders

Long Stroke Cylinders

Dual Stroke Cylinders

p.170

End Keep Cylinders

p.190

	Ope	eration	type	Cylinder sp	ecifications	Rod end sp	ecifications	Bumpers	iocation specification		Moun	ting bra	ackets
	Double acting type	Single acting push type	Single acting pull type	Cylinder with magnet	Heat resistant type	Female thread	Male thread	Not avail- able for heat resistant type		Not avail- able for heat resistant type	Foot mounting bracket	Flange mounting bracket	Clevis mounting bracket
Standard Cylinders													
Non-rotating Cylinders	Note			Note		Note	Note						
Square Rod Cylinders													
Double Rod Cylinders										\bigcirc			
Tandem Cylinders													
Dual Stroke Cylinders							\bigcirc			\bigcirc			
Lateral Load Resistant Cylinders										\bigcirc			
Long Stroke Cylinders													
End Keep Cylinders													

The colored areas include bore sizes of ϕ 6, ϕ 8, and ϕ 10. Note: Non-rotating cylinders are set at bore sizes ϕ 6, ϕ 8, and ϕ 10 only.

Cylinder Thrust

Select a suitable bore size considering the load and air pressure to obtain the required thrust. Since the figures in the table are calculated values, select a bore size that results in a load ratio (load ratio = $\frac{\text{Load}}{\text{Calculated value}}$) of 70% or less (50% or less for high speed) or less (50% or less for high speed).

Double acting type

Doub	le acting	g type		F	Push		Pull						N [lbf.]
Bore size	Piston rod diameter	Operation	Pressure area					Air pressure	MPa [psi]			
mm [in.]	mm [in.]	Operation	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
6 [0 006]	4 [0 157]	Push side	28.3 [0.0439]	2.8 [0.63]	5.7 [1.28]	8.5 [1.91]	11.3 [2.54]	14.1 [3.17]	17.0 [3.82]	19.8 [4.45]	22.6 [5.08]	25.4 [5.71]	-
6 [0.236]	4 [0.157]	Pull side	15.7 [0.0243]	1.6 [0.36]	3.1 [0.7]	4.7 [1.06]	6.3 [1.42]	7.9 [1.78]	9.4 [2.11]	11.0 [2.47]	12.6 [2.83]	14.1 [3.17]	-
0 [0 215]	5 [0.197]	Push side	50.3 [0.0780]	5.0 [1.12]	10.1 [2.27]	15.1 [3.39]	20.1 [4.52]	25.1 [5.64]	30.2 [6.79]	35.2 [7.91]	40.2 [9.04]	45.2 [10.2]	-
8 [0.315]	5[0.197]	Pull side	30.6 [0.0474]	3.1 [0.70]	6.1 [1.37]	9.2 [2.07]	12.3 [2.77]	15.3 [3.44]	18.4 [4.14]	21.4 [4.81]	24.5 [5.51]	27.6 [6.20]	-
10 [0.394]	E [0 107]	Push side	78.5 [0.1217]	7.9 [1.78]	15.7 [3.53]	23.6 [5.31]	31.4 [7.06]	39.3 [8.83]	47.1 [10.6]	55.0 [12.4]	62.8 [14.1]	70.7 [15.9]	-
10 [0.394]	5 [0.197]	Pull side	58.9 [0.0913]	5.9 [1.33]	11.8 [2.65]	17.7 [3.98]	23.6 [5.31]	29.5 [6.63]	35.3 [7.94]	41.2 [9.26]	47.1 [10.6]	53.0 [11.9]	-
10 [0 470]	6 [0.236]	Push side	113.0 [0.175]	11.3 [2.54]	22.6 [5.08]	33.9 [7.62]	45.2 [10.2]	56.5 [12.7]	67.8 [15.2]	79.1 [17.8]	90.4 [20.3]	101.7 [22.86]	113.0 [25.40]
12 [0.472]	0 [0.230]	Pull side	84.8 [0.131]	8.5 [1.91]	17.0 [3.82]	25.4 [5.71]	33.9 [7.62]	42.4 [9.53]	50.9 [11.4]	59.3 [13.3]	67.8 [15.2]	76.3 [17.2]	84.8 [19.1]
16 [0.630]	8 [0.315]	Push side	201.0 [0.312]	20.1 [4.52]	40.2 [9.04]	60.3 [13.6]	80.4 [18.1]	100.5 [22.59]	120.6 [27.11]	140.7 [31.63]	160.8 [36.15]	180.9 [40.67]	201.0 [45.18]
10 [0.030]	0 [0.315]	Pull side	150.0 [0.233]	15.1 [3.39]	30.1 [6.77]	45.2 [10.2]	60.3 [13.6]	75.4 [16.9]	90.4 [20.3]	105.5 [23.72]	120.6 [27.11]	135.6 [30.48]	150.7 [33.88]
20 [0.787]	10 [0.394]	Push side	314.0 [0.487]	31.4 [7.06]	62.8 [14.1]	94.2 [21.2]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]
20 [0.707]	10 [0.394]	Pull side	235.5 [0.365]	23.6 [5.31]	47.1 [10.6]	70.7 [15.9]	94.2 [21.2]	117.8 [26.48]	141.3 [31.76]	164.9 [37.07]	188.4 [42.35]	212.0 [47.66]	235.5 [52.94]
25 [0.984]	12 [0.472]	Push side	490.6 [0.760]	49.1 [11.0]	98.1 [22.1]	147.2 [33.09]	196.3 [44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.23]	441.6 [99.27]	490.6 [110.3]
25 [0.904]	12 [0.472]	Pull side	377.6 [0.585]	37.8 [8.50]	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.88]
32 [1.260]	16 [0.630]	Push side	803.8 [1.246]	80.4 [18.1]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]
52 [1.200]	10 [0.030]	Pull side	602.9 [0.934]	60.3 [13.6]	120.6 [27.11]	180.9 [40.67]	241.2 [54.22]	301.4 [67.75]	361.7 [81.31]	422.0 [94.87]	482.3 [108.4]	542.6 [122.0]	602.9 [135.5]
40 [1.575]	16 [0.630]	Push side	1256.0 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]
40[1.575]	10 [0.030]	Pull side	1055.0 [1.635]	105.5 [23.72]	211.0 [47.43]	316.5 [71.15]	422.0 [94.87]	527.5 [118.6]	633.0 [142.3]	738.5 [166.0]	844.0 [189.7]	949.5 [213.4]	1055.0 [237.2]
50 [1.969]	20 [0.787]	Push side	1962.5 [3.042]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]
50 [1.505]	20 [0.707]	Pull side	1648.5 [2.555]	164.9 [37.07]	329.7 [74.12]	494.6 [111.2]	659.4 [148.2]	824.3 [185.3]	989.1 [222.3]	1154.0 [259.4]	1318.8 [296.5]	1483.7 [333.5]	1648.5 [370.6]
63 [2.480]	20 [0.787]	Push side	3115.7 [4.829]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]
03 [2.400]	20 [0.707]	Pull side	2801.7 [4.343]	280.2 [62.99]	560.3 [126.0]	840.5 [188.9]	1120.7 [251.9]	1400.8 [314.9]	1681.0 [377.9]	1961.2 [440.9]	2241.3 [503.8]	2521.5 [566.8]	2801.7 [629.8]
80 [3.150]	25 [0 984]	Push side	5024.0 [7.787]	502.4 [112.9]	1004.8 [225.9]	1507.2 [338.8]	2009.6 [451.8]	2512.0 [564.7]	3014.4 [677.6]	3516.8 [790.6]			5024.0 [1129.4]
00 [3.130]	20 [0.904]	Pull side	4533.4 [7.027]	453.3 [101.9]	906.7 [203.8]	1360.0 [305.7]	1813.4 [407.7]	2266.7 [509.6]	2720.0 [611.5]	3173.4 [713.4]	3626.7 [815.3]	4080.0 [917.2]	4533.4 [1019.1]
100 [3.940]	20 [1 101]	Push side	7850.0 [12.168]	785.0 [176.5]	1570.0 [352.9]	2355.0 [529.4]	3140.0 [705.9]	3925.0 [882.3]					7850.0 [1764.7]
100 [3.940]	JZ [1.101]	Pull side	7046.2 [10.922]	704.6 [158.4]	1409.2 [316.8]	2113.8 [475.2]	2818.5 [633.6]	3523.1 [792.0]	4227.7 [950.4]	4932.3 [1108.8]	5636.9 [1267.2]	6341.5 [1425.6]	7046.2 [1584.0]

Single acting type

													N [lbf.]
Operation	Bore size	Piston rod diameter	Pressure area					Air pressure	MPa [psi.]			
type	mm [in.]	mm [in.]	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
	6 [0.236]	4 [0.157]	28.3 [0.0439]	-	-	5.6 [1.26]	8.4 [1.89]	11.2 [2.52]	14.1 [3.17]	16.9 [3.80]	19.7 [4.43]	22.5 [5.06]	-
	8 [0.315]	5 [0.197]	50.3 [0.0780]	-	-	10.4 [2.34]	15.4 [3.46]	20.4 [4.59]	25.5 [5.73]	30.5 [6.86]	35.5 [7.98]	40.5 [9.10]	-
	10 [0.394]	5 [0.197]	78.5 [0.1217]	-	-	18.9 [4.25]	26.7 [6.00]	34.6 [7.78]	42.4 [9.53]	50.3 [11.3]	58.1 [13.1]	66.0 [14.8]	-
0.1	12 [0.472]	6 [0.236]	113.0 [0.175]	-	12.8 [2.88]	24.1 [5.42]	35.4 [7.96]	46.7 [10.5]	58.0 [13.0]	69.3 [15.6]	80.6 [18.1]	91.9 [20.7]	103.2 [23.20]
Single	16 [0.630]	6 [0.236]	201.0 [0.312]	-	26.1 [5.87]	46.2 [10.4]	66.3 [14.9]	86.4 [19.4]	106.5 [23.94]	126.6 [28.46]	146.7 [32.98]	166.8 [37.50]	186.9 [42.02]
acting push type	20 [0.787]	8 [0.315]	314.0 [0.487]	-	49.0 [11.0]	80.4 [18.1]	111.8 [25.13]	143.2 [32.19]	174.6 [39.25]	206.0 [46.31]	237.4 [53.37]	268.8 [60.43]	300.2 [67.48]
paonijpo	25 [0.984]	10 [0.394]	490.6 [0.760]	-	76.3 [17.2]	125.4 [28.19]	174.5 [39.23]	223.5 [50.24]	272.6 [61.28]	321.6 [72.30]	370.7 [83.33]	419.8 [94.37]	468.8 [105.4]
	32 [1.260]	12 [0.472]	803.8 [1.246]	-	123.4 [27.74]	203.8 [45.81]	284.1 [63.87]	364.5 [81.94]	444.9 [100.0]	525.3 [118.1]	605.7 [136.2]	686.1 [154.2]	766.4 [172.3]
	40 [1.575]	16 [0.630]	1256.0 [1.947]	-	205.9 [46.29]	331.5 [74.52]	457.1 [102.8]	582.7 [131.0]	708.3 [159.2]	833.9 [187.5]	959.5 [215.7]	1085.1 [243.9]	1210.5 [272.1]
	50 [1.969]	20 [0.787]	1962.5 [3.042]	141.0 [31.70]	337.2 [75.80]	533.5 [119.9]	729.7 [164.0]	926.0 [208.2]	1122.2 [252.3]	1318.5 [296.4]	1514.7 [340.5]	1711.0 [384.6]	1907.2 [428.7]
	6 [0.236]	4 [0.157]	15.7 [0.0243]	-	-	1.8 [0.40]	3.4 [0.76]	5.0 [1.12]	6.5 [1.46]	8.1 [1.82]	9.7 [2.18]	11.2 [2.52]	-
	8 [0.315]	5 [0.197]	30.6 [0.0474]	-	-	4.5 [1.01]	7.6 [1.71]	10.6 [2.38]	13.7 [3.08]	16.7 [3.75]	19.8 [4.45]	22.9 [5.15]	-
	10 [0.394]	5 [0.197]	58.9 [0.0913]	-	-	13.0 [2.92]	18.9 [4.25]	24.8 [5.58]	30.6 [6.88]	36.5 [8.21]	42.4 [9.53]	48.3 [10.9]	-
<u>.</u>	12 [0.472]	6 [0.236]	84.8 [0.131]	-	7.2 [1.62]	15.6 [3.51]	24.1 [5.42]	32.6 [7.33]	41.1 [9.24]	49.5 [11.1]	58.0 [13.0]	66.5 [14.9]	75.0 [16.9]
Single	16 [0.630]	6 [0.236]	150.7 [0.234]	-	16.0 [3.60]	31.1 [6.99]	46.2 [10.4]	61.3 [13.8]	76.3 [17.2]	91.4 [20.5]	106.5 [23.94]	121.5 [27.31]	136.6 [30.71]
acting pull type	20 [0.787]	8 [0.315]	235.5 [0.365]	-	33.3 [7.49]	56.9 [12.8]	80.4 [18.1]	104.0 [23.38]	127.5 [28.66]	151.1 [33.97]	174.6 [39.25]	198.2 [44.56]	221.7 [49.84]
Pail (JPC	25 [0.984]	10 [0.394]	377.6 [0.585]	-	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.88]
	32 [1.260]	12 [0.472]	602.9 [0.934]	-	61.4 [13.8]	121.7 [27.36]	182.0 [40.91]	242.2 [54.45]	302.5 [68.00]	362.8 [81.56]	423.1 [95.11]	483.4 [108.7]	543.7 [122.2]
	40 [1.575]	16 [0.630]	1055.0 [1.635]	-	165.7 [37.25]	271.2 [60.97]	376.7 [84.68]	482.2 [108.4]	587.7 [132.1]	693.2 [155.8]	798.7 [179.5]	904.2 [203.3]	1009.7 [227.0]
	50 [1.969]	20 [0.787]	1648.5 [2.555]	109.6 [24.64]	274.4 [61.69]	439.3 [98.75]	604.1 [135.8]	769.0 [172.9]	933.8 [209.9]	1098.7 [247.0]	1263.5 [284.0]	1428.4 [321.1]	1593.2 [358.2]

Spring return force N [lbf.] Bore size Stroke Zero End of Bore size Stroke Zero mm stroke stroke mm stroke mm mm X 5 X10 × 5 ×10 ×15 ×20 ×25 ×30 2.1 [0.47] 1.2 [0.27] 18.1 [4.07] 6 2.9 [0.65] 14.5 [3.26] × 5 ×10 3.3 [0.74] 1.9 [0.43] 10.7 [2.41] 14.5 [3.26] 8 4.7 [1.06] 25 × 5 ×10 3.3 [0.74] 1.9 [0.43] 12.7 [2.85] 10 4.7 [1.06] 10.9 [2.45] × 5 ×10 ×15 ×20 ×25 ×30 × 5 ×10 ×15 ×20 ×25 ×30 7.7 [1.73] 32.0 [7.19] 5.7 [1.28] 26.7 [6.00 3.7 [0.83] 21.3 [4.79] 26.7 [6.00] 12 32 9.8 [2.20] 5.7 [1.28] 4.7 [1.06] 3.7 [0.83] 24.0 [5.40] 21.3 [4.79] × 5 ×10 ×15 ×20 ×25 ×30 × 5 ×10 ×15 ×20 ×25 ×30 11.1 [2.50] 37.7 [8.47] 8.2 [1.84] 5.3 [1.19] 30.2 6.79 22.6 [5.08] 30.2 [6.79] 45.3 [10.18] 16 14.1 [3.17] 40 8.2 [1.84] 6.7 [1.51] 26.4 [5.93] 5.3 [1.19] 22.6 [5.08] × 5 ×10 ×15 ×20 ×25 ×30 ×10 ×15 ×20 ×25 ×30 ×35 ×40 11.6 [2.61] 45.4 [10.21] 9.5 [2.14] 7.3 [1.64] 40.5 [9.10] 35.5 [7.98] 20 13.8 [3.10] 43.0 [9.67] 40.5 [9.10] 38.0 [8.54] 35.5 [7.98] 9.5 [2.14] 8.4 [1.89] 7.3 [1.64] 50

How to read the thrust table

- 1. For the thrust of the double rod cylinder double acting type, see the pull side of the double acting type thrust table. For the thrust of the single acting type, see the single acting pull type thrust table.
- 2. The thrust of the tandem cylinder is double that of the standard type when air is supplied simultaneously to Port A and Port B, for any operation type before the stroke in Cylinder 1 is complete. When air is supplied to any of Ports A, B, or C alone, then the thrust is the same as for the standard type.

	С	B	A	
_		ļ		
С	ylinder 2	(Cylind] er 1

- 3. The thrust for dual stroke cylinders is the same as for the standard type, for any operation type.
- 4. When directly carrying a load, care must be exercised of a lateral load.
 - For details, see p.206 "Lateral Load."

Square rod cylinders

N [lbf.]

End of

stroke

21.8 [4.90]

37.4 [8.41]

					۲			۲					N [lbf.]
Bore size	Piston rod	Operation	Pressure area					Air pressu	ure MPa				
mm [in.]	size mm [in.]	Operation	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
20 [0.787]		Push side	314.0 [0.487]	31.4 [7.06]	62.8 [14.1]	94.2 [21.2]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]
20 [0.707]	□7.4	Pull side	259.2 [0.402]	25.9 [5.82]	51.8 [11.6]	77.8 [17.5]	103.7 [23.3]	129.6 [29.13]	155.5 [34.96]	181.5 [40.80]	207.4 [46.62]	233.3 [52.45]	259.2 [58.27]
25 [0.984]	[[0.291]	Push side	490.6 [0.760]	49.1 [11.0]	98.1 [22.1]	147.2 [33.09]	196.3 [44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.23]	441.6 [99.27]	490.6 [110.3]
25 [0.964]		Pull side	435.9 [0.676]	43.6 [9.80]	87.2 [19.6]	130.8 [29.40]	174.3 [39.18]	217.9 [48.98]	261.5 [58.79]	305.1 [68.59]	348.7 [78.39]	392.3 [88.19]	435.9 [97.99]
32 [1.260]		Push side	803.8 [1.246]	80.4 [18.1]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]
32 [1.200]	□13	Pull side	634.8 [0.984]	63.5 [14.3]	127.0 [28.55]	190.5 [42.82]	253.9 [57.08]	317.4 [71.35]	380.9 [85.63]	444.4 [99.90]	507.9 [114.2]	571.4 [128.5]	634.8 [142.7]
40 [1.575]	[[0.512]	Push side	1256.0 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]
40[1.575]		Pull side	1087.0 [1.685]	108.7 [24.44]	217.4 [48.87]	326.1 [73.31]	434.8 [97.74]	543.5 [122.2]	652.2 [146.6]	760.9 [171.1]	869.6 [195.5]	978.3 [219.9]	1087.0 [244.4]
50 [1.969]		Push side	1962.5 [3.042]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]
20[1.909]	□18	Pull side	1638.5 [2.540]	163.9 [36.84]	327.7 [73.67]	491.6 [110.5]	655.4 [147.3]	819.3 [184.2]	983.1 [221.0]	1147.0 [257.8]	1310.8 [294.7]	1474.7 [331.5]	1638.5 [368.3]
63 [2.480]	[]0.709]	Push side	3115.7 [4.829]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]
03 [2.460]		Pull side	2791.7 [4.327]	279.2 [62.76]	558.3 [125.5]	837.5 [188.3]	1116.7 [251.0]	1395.8 [313.8]	1675.0 [376.5]	1954.2 [439.3]	2233.3 [502.0]	2512.5 [564.8]	2791.7 [627.6]

JIG CYLINDERS C SERIES DOUBLE ROD CYLINDERS

Double Acting Type, Single Acting Type

Symbols

Double acting type

•Single acting type

Specifications

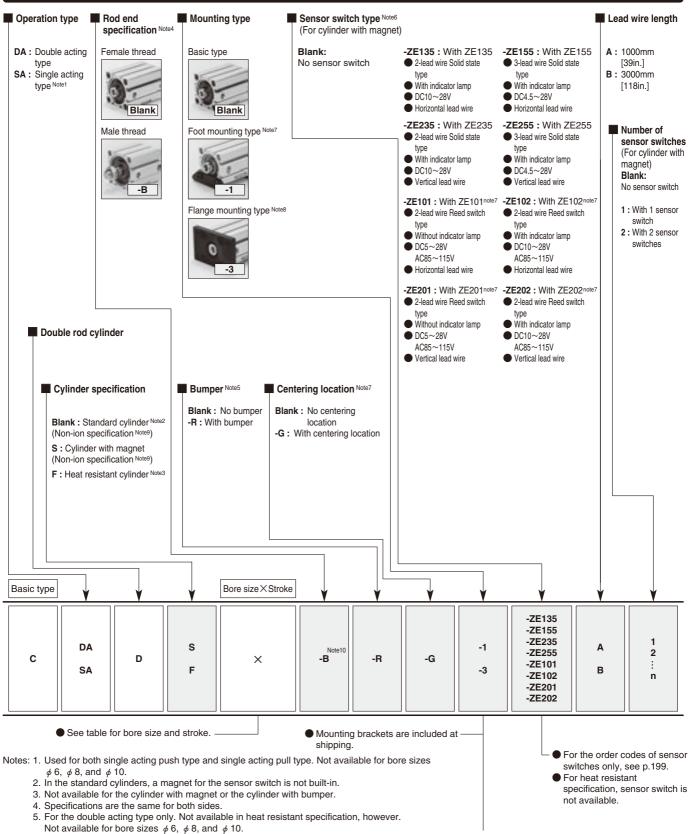
Item	Bore size mm [in.]	6 [0.236] 8	[0.315] 10 [0.394]	12 [0.472]	16 [0.630] 20 [0.787] 25	[0.984] 32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480] 80 [3	.150] 100 [3.940]	
Operation type		Double	acting type		Double acting typ	e, Single acting	type		Double a	cting type	
Media						Air					
Operating pressure range	Double acting type	-	5~0.9 ~131]		0.1~1. [15~14				0.05~1.0 [7~145]		
MPa [psi.]	Single acting type		_	0.18~1.0 [26~145]	••••	5~1.0 ~145]		0.1~1.0 [15~145]	-	_	
Proof pressure	MPa [psi.]	1.3	1.35 [196] 1.5 [218]								
Operating temperature range	°C [°F]		0	~60 [32~	~140] (The heat resis	stant specification	on is 120	[248]. Note	^{e1})		
Operating speed range	Double acting type	be 50~500 [2.0~19.7] 30~500 [1.2~19.7]						3	30~300 [1.2~11.8]		
mm/s [in./sec.]	Single acting type		_		100~500 [3.9	9~19.7]		100~300 [3.9~11.8]	-	_	
Quehian	Double acting type	1	None			Note2)	Note2)				
Cushion	Single acting type	pe — None —							_		
Lubrication		Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or en							r equivalent.)		
Port size		Ma	3×0.5		M5×0.8	Rc1	1/8	Rc	1/4	Rc3/8	

Remark: For Handling Instructions and Precautions, see p.205.

Notes: 1. For heat resistant specification, consult us. Not available for bore sizes ϕ 6, ϕ 8, and ϕ 10.

2. Not available for heat resistant specification.

Bore Size and Stroke


	D	Standard	1 strokes
Operation type	Bore size	Standard cylinder	Cylinder with magnet
	6		
	8	5, 10, 15, 20	5, 10, 15, 20
	10		
	12	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
	16	5, 10, 15, 20, 25, 50	5, 10, 13, 20, 23, 30
Double	20	5, 10, 15, 20, 25, 30, 35, 40, 45, 50	5, 10, 15, 20, 25, 30, 35, 40, 45, 50
acting type	25	3, 10, 13, 20, 23, 30, 33, 40, 43, 30	3, 10, 13, 20, 23, 30, 33, 40, 43, 30
	32	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	40	3, 10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100	3, 10, 13, 20, 23, 30, 33, 40, 43, 30, 73, 100
	50		
	63	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100	10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100
	80		
	100		
	12		
	16		
Single	20	5, 10, 15, 20, 25, 30	5, 10, 15, 20, 25, 30
acting type	25	0, 10, 10, 20, 20, 00	0, 10, 10, 20, 20, 00
0.91	32		
	40		
	50	10, 15, 20, 25, 30, 35, 40	10, 15, 20, 25, 30, 35, 40

Remarks: 1. Stroke tolerance ${}^{+1}_{0}$ [${}^{+0.039in.}_{0}$]

2. In most cases, body cutting is used for the non-standard strokes.

However, body cutting is not used for strokes of less than 5mm for $\phi 12 \sim \phi 40$, and strokes of less than 10mm for $\phi 50 \sim \phi 100$. The collar packed is used for these cases. Bore sizes $\phi 6$ to $\phi 10$ are collar packed only.

Order Codes for Double Rod Cylinders

- 6. For details of sensor switches, see p.1544.
- 7. Not available for bore sizes ϕ 6, ϕ 8, ϕ 10 and ϕ 12.

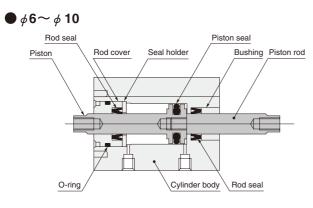
bracket

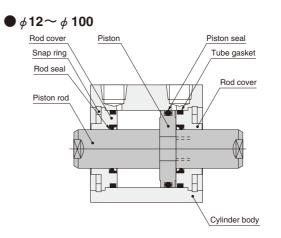
(p.198)

- 8. Cannot be mounted on bore size ϕ 40 with centering location (-G). Not available for bore sizes ϕ 6, ϕ 8, and ϕ 10.
- 9. Bore sizes ϕ 6, ϕ 8, ϕ 10, and ϕ 12 are not non-ion specification.
- 10. For information regarding the cylinder joint and cylinder rod end for male thread, see p.1568.

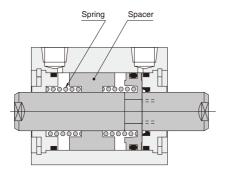
Additional Parts (To be ordered separately)

5-

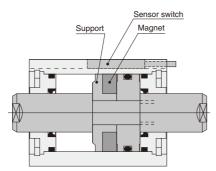



Mounting screws (p.209)

• In sizes ϕ 12 and ϕ 16 with foot mounting brackets and strokes of less than 10mm, the foot mounting bracket and sensor switch may interfere with each other, which could prevent 2 sensor switches from being mounted. For details, consult us.

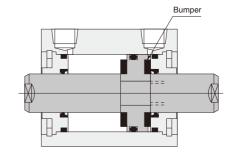

Foot mounting bracket (p.197)

Double acting type (CDAD)



Single acting type (CSAD)

Note: Bore sizes ϕ 6 to ϕ 10 are not available as single acting cylinders.


• Cylinder with magnet

Major Parts and Materials

Parts Bore mm	φ 6	φ 8	φ 10	φ 12	φ 16	φ 20	φ 25	φ 32	φ 40	φ 50	φ 63	φ 80	φ100
Cylinder body					Alum	inum	alloy	(and	odize	d)			
Piston	Stai	nless	steel	Alun	ninun	n allo	y (spe	ecial r	ust p	reven	tion t	reatr	nent)
Piston rod	Stai	nless	steel	Stainle	ss steel	(chrome	plated)	9	Steel	(chro	me p	late	d)
Seal	Synthetic rubber (NBR)												
Rod cover	Aluminum alloy (special wear-resistant treatment)												
Snap ring	Steel (phosphate coating)												
Spring		_				Pia	ano w	vire				—	
Spacer		_		Alumir	num allo	oy (spec	ial rust	prevent	ion trea	tment)		_	
Bumper		-		Syr	ntheti	c rub	ber (I	NBR;	ureth	nane	for ϕ	12 0	only)
Magnet	Neody	Veodymium magnet Plastic magnet											
Support		_		Alun	ninun	n allo	y (spe	ecial r	ust p	reven	tion t	reatr	nent)
Bushing	Cop	per a	alloy					-	-				

•With bumper

Note: Bore sizes ϕ 6 to ϕ 10 are not available with bumpers.

Seals

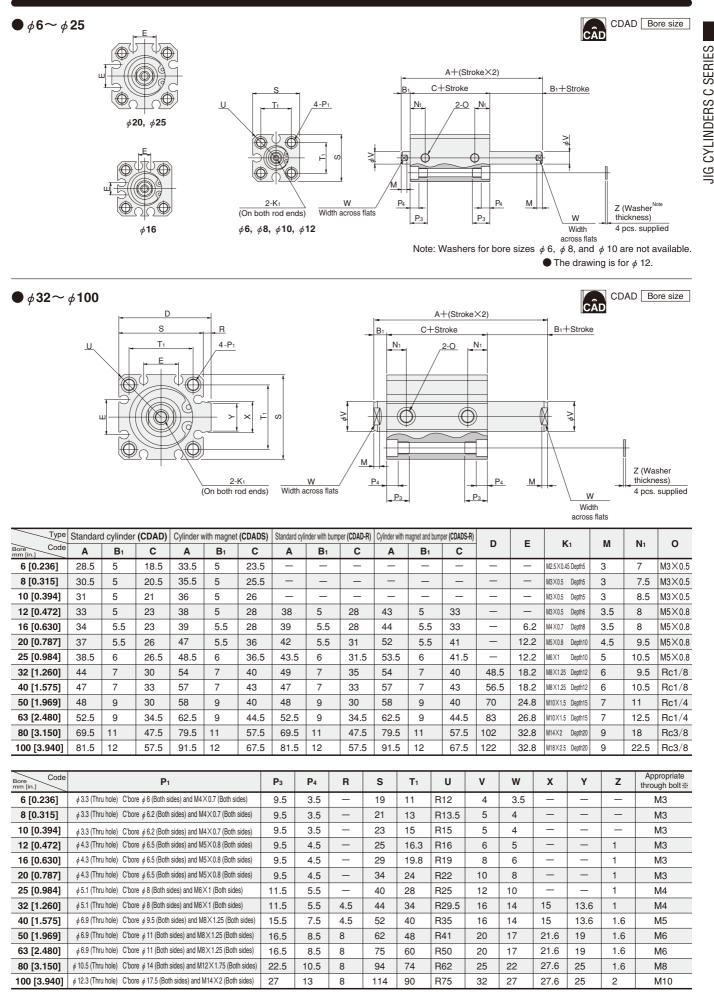
Parts Bore mm	Rod seal	Piston seal	Tube gasket
φ 12	MYR-6	COP-12	Y090260
<i>φ</i> 16	MYR-8	COP-16	Y090207
φ 20	MYR-10	COP-20(MYA-16)	Y090216
φ 25	MYR-12	COP-25(MYA-21)	Y090210
φ 32	MYR-16	COP-32	L090084
φ 40	MYR-16	COP-40	L090151
φ 50	MYR-20	COP-50	L090174
φ 63	MYR-20	COP-63	L090180
φ 80	PNY-25	COP-80	L090171
φ 100	PNY-32	COP-100	L090172

Note: Items in parentheses () are for the single acting type.

Double acting type

	sung type							g [oz.]
Bore size	Zaro stroko maso	Additional mass for each 1mm	Additional mass of	Additional mass of	Mass of mou	inting bracket	Additional mass o	f sensor switch Note
mm [in.]	Zero stroke mass	[0.0394in.] stroke	cylinder with bumper	cylinder with magnet	Foot bracket	Flange bracket	ZE	ZE
6 [0.236]	12.7 [0.448]	0.84 [0.0296]	—	3.9 [0.138]	—	-		
8 [0.315]	19.2 [0.677]	1.11 [0.0392]	-	5.3 [0.187]	—	-		
10 [0.394]	21.0 [0.741]	1.27 [0.0448]	—	6.7 [0.236]	_	—]	
12 [0.472]	30.41 [1.073]	1.51 [0.0533]	7.53 [0.266]	6.59 [0.232]	50 [1.76]	55 [1.94]		
16 [0.630]	44.4 [1.566]	2.01 [0.0709]	10.05 [0.354]	9.93 [0.350]	62 [2.19]	71 [2.50]		
20 [0.787]	73.31 [2.586]	2.88 [0.102]	14.38 [0.507]	25.71 [0.907]	84 [2.96]	101 [3.56]		
25 [0.984]	104.2 [3.675]	3.99 [0.141]	19.97 [0.704]	37.47 [1.322]	104 [3.67]	160 [5.64]	15 [0.53]	35 [1.23]
32 [1.260]	165.44 [5.836]	5.69 [0.201]	28.47 [1.004]	52.43 [1.849]	126 [4.44]	186 [6.56]		
40 [1.575]	241.43 [8.516]	6.35 [0.224]	0	69.15 [2.439]	160 [5.64]	335 [11.82]]	
50 [1.969]	328.92 [11.602]	9.5 [0.335]	0	108 [3.81]	220 [7.76]	447 [15.77]		
63 [2.480]	499.3 [17.61]	11.16 [0.394]	0	159 [5.61]	300 [10.58]	591 [20.85]		
80 [3.150]	1029.17 [36.302]	16.91 [0.596]	0	245 [8.64]	644 [22.72]	1414 [49.88]		
100 [3.940]	1872.15 [66.037]	24.93 [0.879]	0	360 [12.70]	1172 [41.34]	2606 [91.92]		

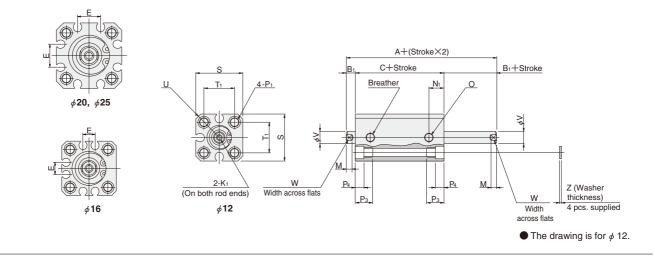
Note: Sensor switch codes A and B show the lead wire lengths. A: 1000mm [39in.] B: 3000mm [118in.]


Single acting type

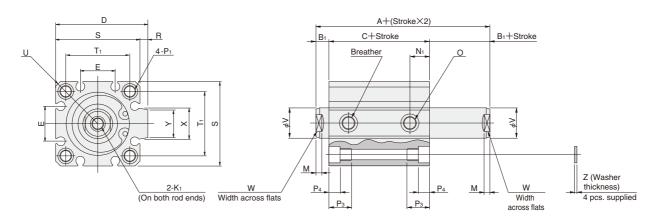
Single act	ing ty	/pe											g [oz.]
Item				Basic m	ass Note1				Additional mass of cylinder with magnet	Mass of mou	nting bracket	Additional mass of	sensor switch Note2
Bore Stroke mm mm [in.]	5	10	15	20	25	30			5∼30 (<i>φ</i> 50: 10∼40.)	Foot bracket	Flange bracket	ZE	ZEBB
12 [0.472]	42.64 [1.504]	50.16 [1.769]	57.69 [2.035]	76.83 [2.710]	84.35 [2.975]	91.88 [3.241]	-	-	7.78 [0.274]	50 [1.76]	55 [1.94]		
16 [0.630]	62.08 [2.190]	72.13 [2.544]	82.18 [2.899]	106.48 [3.756]	116.53 [4.110]	126.58 [4.465]	_	_	10.32 [0.364]	62 [2.19]	71 [2.50]		
20 [0.787]	84.93 [2.996]	99.31 [3.503]	113.68 [4.010]	147.6 [5.206]	161.98 [5.714]	176.35 [6.220]	—	-	23.38 [0.825]	84 [2.96]	101 [3.56]		
25 [0.984]	120.1 [4.236]	140.07 [4.941]	160.04 [5.645]	206.73 [7.292]	226.7 [7.996]	246.67 [8.701]	—	—	39.1 [1.379]	104 [3.67]	160 [5.64]	15 [0.53]	35 [1.23]
32 [1.260]	187.86 [6.626]	216.33 [7.631]	244.79 [8.635]	335.01 [11.817]	363.48 [12.821]	391.94 [13.825]	-	-	50.58 [1.784]	126 [4.44]	186 [6.56]		
40 [1.575]	266 [9.38]	297.75 [10.503]	329.49 [11.622]	448.28 [15.812]	480.02 [16.932]	511.77 [18.052]	-	-	69.42 [2.449]	160 [5.64]	335 [11.82]		
50 [1.969]		401.18 [14.151]	448.67 [15.826]	496.15 [17.501]	639.23 [22.548]	686.72 [24.223]	734.2 [25.898]	781.69 [27.573]	106.05 [3.741]	220 [7.76]	447 [15.77]		

Notes: 1. The above table is for the standard strokes. 2. Sensor switch codes A and B show the lead wire lengths. A: 1000mm [39in.] B: 3000mm [118in.]

 $\begin{array}{l} \mbox{Calculation example: For the mass of a double acting type cylinder with magnet, bore size of 25mm, stroke of 30mm, and with 2 sensor switches ($ **ZE135A** $) \\ 104.2+(3.99\times30)+37.47+(15\times2)=291.37g \ [10.278oz.] \end{array}$

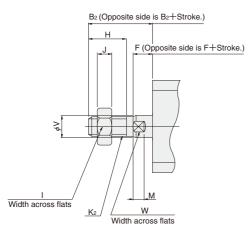


% Some types of mounting screws are available (to be ordered separately). See p.209.

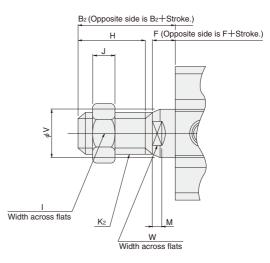


$$\phi$$
 32 \sim ϕ 50

CSAD Bore size

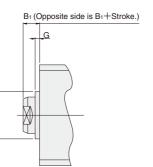

Туре		Stan	dard cyl	inder (C	SAD)			Cylin	der with	magnet	(CSAD	S)							
Stroke	5~15	(φ 50 : 1	0~ 20)	16~30	Ο (φ 50 : 2	21~40)	5~1	5 (φ 50 :	10~20)	16~	~ 30 (<i>φ</i> 5	0: 21~40) D	E	E F	(1	М	N 1	0
Bore Code	Α	B 1	С	Α	B 1	С	Α	B 1	С	A	B	С							
12 [0.472]	38	5	28	48	5	38	43	5	33	53	5	43	-	-	M3×0.5	Depth6	3.5	8	M5×0.8
16 [0.630]	39	5.5	28	49	5.5	38	44	5.5	33	54	5.5	5 43	_	6.2	M4×0.7	Depth8	3.5	8	M5×0.8
20 [0.787]	37	5.5	26	47	5.5	36	47	5.5	36	57	5.5	5 46	_	12.2	M5×0.8	Depth10	4.5	9.5	M5×0.8
25 [0.984]	38.5	6	26.5	48.5	6	36.5	48.5	6	36.5	58.5	5 6	46.5	; —	12.2	M6×1	Depth10	5	10.5	M5×0.8
32 [1.260]	44	7	30	59	7	45	54	7	40	69	7	55	48.5	18.2	M8×1.2	5 Depth12	6	9.5	Rc1/8
40 [1.575]	47	7	33	62	7	48	57	7	43	72	7	58	56.5	18.2	M8×1.2	5 Depth12	6	10.5	Rc1/8
50 [1.969]	48	9	30	63	9	45	58	9	40	73	9	55	70	24.8	M10×1.	5 Depth15	7	11	Rc1/4
Bore Code	P1						P3	P 4	R	S	T ₁	U	v	w	Х	Y	Z		propriate ugh bolt %
12 [0.472]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both side						9.5	4.5	-	25	16.3	R16	6	5	—	-	1		M3
16 [0.630]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both side						9.5	4.5	-	29	19.8	R19	8	6	—	-	1		M3
20 [0 797]	443 (Thru	hala) Counta	rhoro 465/D	oth cidoo) and		h aidaa)	0.5	4 E		04	04	DOO	10	0			4		140

12 [0.472]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	—	25	16.3	R16	6	5	_	—	1	M3
16 [0.630]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	-	29	19.8	R19	8	6	_	—	1	M3
20 [0.787]	ϕ 4.3 (Thru hole) Counterbore ϕ 6.5 (Both sides) and M5 \times 0.8 (Both sides)	9.5	4.5	-	34	24	R22	10	8	_	—	1	M3
25 [0.984]	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	_	40	28	R25	12	10	_	_	1	M4
32 [1.260]	ϕ 5.1 (Thru hole) Counterbore ϕ 8 (Both sides) and M6×1 (Both sides)	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
40 [1.575]	ϕ 6.9 (Thru hole) Counterbore ϕ 9.5 (Both sides) and M8 \times 1.25 (Both sides)	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 [1.969]	ϕ 6.9 (Thru hole) Counterbore ϕ 11 (Both sides) and M8×1.25 (Both sides)	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6


% Some types of mounting screws are available (to be ordered separately). See p.209.

Double acting type, Single acting type

• ϕ 32 ~ ϕ 100 (Single acting type available up to ϕ 50)



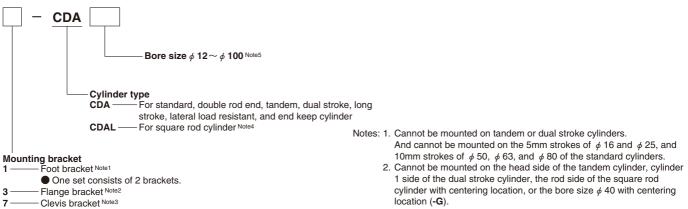
Bore Code	B2	F	н	I	J	K ₂	М	v	W
6 [0.236]	15	5	8	5.5	1.8	M3×0.5	3	4	3.5
8 [0.315]	15	5	8	7	2.4	M4×0.7	3	5	4
10 [0.394]	15	5	8	7	2.4	M4×0.7	3	5	4
12 [0.472]	17	5	10	8	4	M5×0.8	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	M14×1.5	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	M18×1.5	7	20	17
63 [2.480]	37	9	25	27	11	M18×1.5	7	20	17
80 [3.150]	44	11	30	32	13	M22×1.5	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p.1568.

Dimensions of Centering Location (mm)

φL.⁰.1

Bore Code mm [in.]	B 1	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

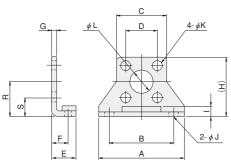

•Not available for bore sizes $\phi 6, \phi 8, \phi 10$ and $\phi 12$.

JIG CYLINDERS C SERIES **MOUNTING BRACKETS**

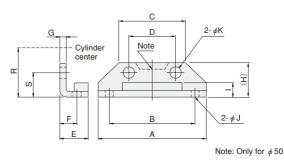
Foot Mounting Bracket, Flange Mounting **Bracket, Clevis Mounting Bracket**

Order Codes of Mounting Bracket Only

- 3. Cannot be used with anything other than the long stroke cylinder, the lateral load resistant cylinder, or the end keep cylinder. 4. Applicable to the foot mounting bracket only.

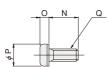

CÂD

5. Not available for ϕ 6 [0.236in.], ϕ 8 [0.315in.], and ϕ 10 [0.394in.].

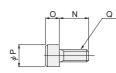

φ 12~ φ 40 : CDA-OP1, φ 50~ φ 100 : CDA-OP2

Dimensions of Foot Mounting Bracket (mm)

• ϕ 12~ ϕ 16



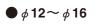
$\phi 20 \sim \phi 100$



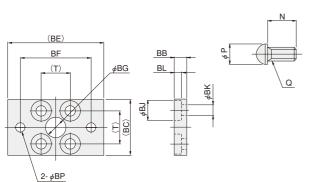
Mounting screw

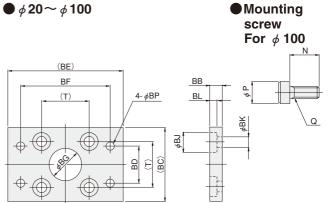
For $\phi 12 \sim \phi 80$

For ϕ **100**


																			Material: Steel
Bore Code	Α	В	С	D	E	F	G	Н	1	J	K	L	N	0	Р	Q	R	S	Mass g [oz.]
12 [0.472]	44	34	25	16.3	12.5	8	2	29.5	4.5	4.5	5.5	11	12	2.7	9.5	M5	17	8.9	50 [1.76]
16 [0.630]	48	38	29	19.8	13	8	2	33.5	4.5	4.5	5.5	11	12	2.7	9.5	M5	19	9.1	62 [2.19]
20 [0.787]	54	44	34	24	15	9.2	3.2	16.5	7	4.5	5.5	—	12 (12, 20)	2.7	9.5	M5	24	12	84 [2.96] (87 [3.07])
25 [0.984]	64	52	40	28	16.5	10.7	3.2	17.5	6	5.5	6.6	-	14 (14, 22)	3.3	10.5	M6	26	12	104 [3.67] (108 [3.81])
32 [1.260]	68	56	44	34	17	11.2	3.2	19	8	5.5	6.6	-	14 (14, 25)	3.3	10.5	M6	30	13	126 [4.44] (131 [4.62])
40 [1.575]	78	64	52	40	18.2	11.2	3.2	19	7	6.6	9	—	20 (20, 30)	4.4	14	M8	33	13	160 [5.64] (168 [5.93])
50 [1.969]	96	78	62	48	22.7	14.7	3.2	22	8	9	9	—	20 (20, 35)	4.4	14	M8	39	15	220 [7.76] (232 [8.18])
63 [2.480]	108	90	75	60	25.2	16.2	3.2	24	8.5	9	9	-	20 (20, 35)	4.4	14	M8	46	16	300 [10.58] (312 [11.01])
80 [3.150]	134	112	94	74	30.5	19.5	4.5	33	12	11	14	-	25	6.6	21	M12	59	22	644 [22.72]
100 [3.940]	160	134	114	90	35.5	23	6	40	14	14	16	—	30	14	21	M14	71	26	1172 [41.34]

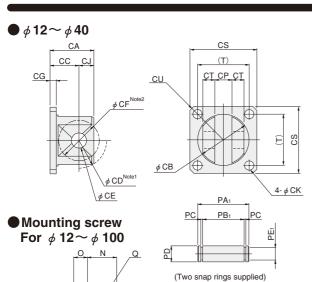
Remark: Figures in parentheses () are for square rod cylinders.

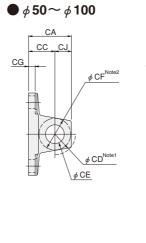

Two figures in parentheses (), Left side: for head side; Right side: for rod side


Mounting screw

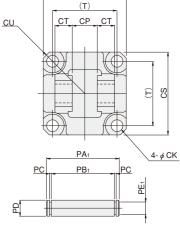
For $\phi 12 \sim \phi 80$

Ρ


φ 12~φ 40 : CDA-OP3, φ 50~φ 100 : CDA-OP4


CÂD

														1	Material: Steel
Bore Code mm [in.]	N	Р	Q	Т	BB	BC	BD	BE	BF	BG	BJ	BK	BL	BP	Mass g [oz.]
12 [0.472]	12	9.5	M5	16.3	6	28	-	50	38	11	10	5.5	3.6	4.5	55 [1.94]
16 [0.630]	12	9.5	M5	19.8	6	32	—	54	42	11	10	5.5	3.6	4.5	71 [2.50]
20 [0.787]	12(18)	9.5	M5	24	6	36	24	58	46	15	10	5.5	3.6	4.5	101 [3.56] (105 [3.70])
25 [0.984]	14(22)	10.5	M6	28	8	42	28	68	54	17	11	6.6	4.3	5.5	160 [5.64] (165 [5.82])
32 [1.260]	14(25)	10.5	M6	34	8	48	34	72	58	22	11	6.6	4.3	5.5	186 [6.56] (196 [6.91])
40 [1.575]	20(30)	14	M8	40	8	58	40	84	68	28	15	9	5.3	6.6	335 [11.82] (351 [12.38])
50 [1.969]	20(35)	14	M8	48	8	66	40	102	82	38	15	9	5.3	9	447 [15.77] (471 [16.61])
63 [2.480]	20(35)	14	M8	60	8	78	50	116	96	40	15	9	5.3	9	591 [20.85] (615 [21.69])
80 [3.150]	25	21	M12	74	12	100	70	142	118	45	22	14	7.3	11	1414 [49.88]
100 [3.940]	30	21	M14	90	20	116	80	170	142	55	23	16	15.2	14	2606 [91.92]


Remark: Figures in parentheses () are for square rod cylinders.

Dimensions of Clevis Mounting Bracket (mm)

CÂD

φ 12~ φ 40 : CDA-OP5, φ 50~ φ 100 : CDA-OP6

CS

(Two snap rings supplied)

																						Μ	lateria	al: Steel
Bore Code	Ν	0	Р	Q	Т	CA	СВ	СС	CD	CE	CF	CG	CJ	СК	СР	CS	СТ	CU	PA ₁	PB ₁	PC	PD	PE1	Mass g [oz.]
12 [0.472]	12	5	8.5	M5	16.3	15	12	11	R 7.5	0	R5	4	4	5.5	4 ^{+0.2} +0.1	25	3	R16	15	10.6	0.7	4 _{f8}	2.5	30 [1.06]
16 [0.630]	12	5	8.5	M5	19.8	17	16	12	R10	5 ^{+0.03}		4	5	5.5	5 ^{+0.2} +0.1	29	3.5	R19	17	12.6	0.7	5f8	3	40 [1.41]
20 [0.787]	12	5	8.5	M5	24	25	22	17	R14	8+0.04	R11	4	8	5.5	8 ^{+0.4} +0.2	34	5.2	R22	24.4	19.6	0.9	8 f8	6	75 [2.65]
25 [0.984]	16	6	10	M6	28	25	26	17	R16	0	R11	4	8	6.6	8 ^{+0.4} +0.2	40	5.2	R25	24.4	19.6	0.9	8 f8	6	100 [3.53]
32 [1.260]	16	6	10	M6	34	29	34	19	R20	0	R12.5	4	10	6.6	$12^{+0.4}_{+0.2}$	44	8	R29.5	34	29.2	0.9	10 _{f8}	8	165 [5.82]
40 [1.575]	20	8	13	M8	40	29	34	19	R20	$10^{+0.04}_{0}$	R12.5	4	10	9	$12^{+0.4}_{+0.2}$	52	8	R35	34	29.2	0.9	10 _{f8}	8	200 [7.05]
50 [1.969]	22	8	13	M8	48	32	-	19	R17	$14^{+0.08}_{0}$	R14	5	13	9 Counterbore φ 17	$20^{+0.6}_{+0.3}$	63	12.5	R41.5	55	47	1.15	14 ^{-0.030} -0.070	13.4	315 [11.11]
63 [2.480]	20	8	13	M8	60	32	-	19	R17	$14^{+0.08}_{0}$	R14	6	13	9 Counterbore φ 20	$20^{+0.6}_{+0.3}$	76	15	R50.5	60	52	1.15	14 ^{-0.030} -0.070	13.4	495 [17.46]
80 [3.150]	30	12	18	M12	74	52	-	32	R24	20 ^{+0.1}	R20	7	20	14 Counterbore φ 22	32 ^{+0.6} +0.3	95	16	R62.5	74	66	1.35	20 ^{-0.040} -0.084	19	1110 [39.15]
100 [3.940]	30	14	21	M14	90	52	_	32	R24	20 ^{+0.1}	R21	7	20	16 Counterbore ¢ 26	32 ^{+0.6} +0.3	115	16	R75.5	74	66	1.35	20 ^{_0.040} _0.084	19	1490 [52.56]

Notes: 1. CD = Swing range of clevis mounting bracket itself. 2. CF = Maximum radius of swing for mating bracket. Remark: ϕ 12~ ϕ 50 are mounted with 2 bolts.

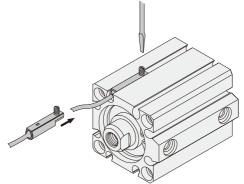
JIG CYLINDERS C SERIES **SENSOR SWITCHES**

Solid State Type, Reed Switch Type

Order Codes

A 1000r B 3000r	nm [39in.]		
ZE135 — Solid state type ZE235 — Solid state type ZE101 — Reed switch type	with indicator lamp with indicator lamp without indicator lamp	DC10V~28V DC10V~28V DC5V~28V AC85~115V	Vertical lead wire Horizontal lead wire
ZE201 — Reed switch type	without indicator lamp	DC5V~28V AC85~115V	Vertical lead wire
ZE155 — Solid state type ZE255 — Solid state type	with indicator lamp	DC4.5V~28V	Horizontal lead wire Vertical lead wire
ZE102 — Reed switch type	with indicator lamp	AC85~115V	Horizontal lead wire
ZE202 — Reed switch type	with indicator lamn	DC10V~28V AC85~115V	Vertical lead wire

For details of sensor switches, see p.1544.


mm

1 pc. mounting

10

Moving Sensor Switch

- Loosening mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- ullet Tighten the mounting screw with a tightening torque of 0.1 \sim 0.2N·m [0.9~1.8in·lbf].

Minimum Cylinder Strokes When Using Sensor Switches

Solid state type

Bore size	2 pcs. mo	unting ^{Note}	1 pc. mounting
Dore Size	1-surface mounting	2-surface mounting	r pc. mounting
6~12 [0.236~0.472in.]	30	10	F
16~100 [0.630~3.940in.]	1	0	5

Note: Two pieces can be mounted with 5mm stroke.

Take note that overlapping may occur, however.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

mm

● Operating range : ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential : C

mm [in]

Reed switch type

Bore size

12 [0.472in.]

16~100 [0.630~3.940in.]

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

2 pcs. mounting

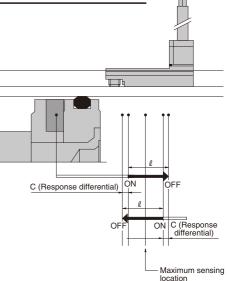
1-surface mounting 2-surface mounting

10

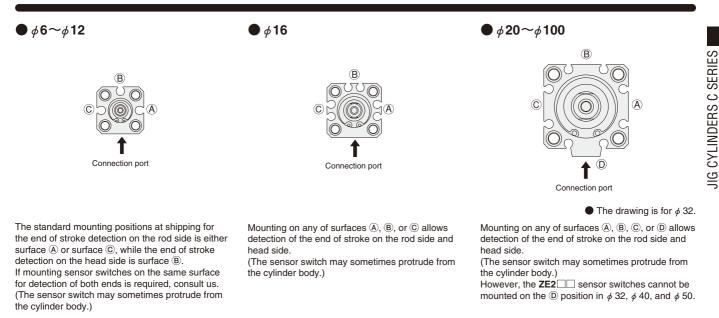
10

30

Solid state type

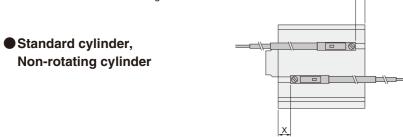

Solid s	tate ty	ре											mm [in.]
Item Bore	6 [0.236]	8 [0.315]	10 [0.394]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]
Operating range : <i>l</i>	1.8~3.0 [0.071~0.118]	1.8~3.0 [0.071~0.118]	2.0~3.2 [0.079~0.126]	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	3.5~7.5 [0.138~0.295]	4~8.5 [0.157~0.335]	4.5~9.5 [0.177~0.374]	4.5~9.0 [0.177~0.354]
Response differential : C	0.2	2 [0.008] or le	ess					0.5 [0.0	2] or less				
Maximum sensing location							6 [0.236]						

Remark: The above table shows reference values.


Reed switch type

Item Bore	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	80 [3.150]	100 [3.940]			
Operating range : l	4.5~8.5 [0.177~0.335]	5.5~9.5 [0.217~0.374]	9~13.5 [0.354~0.531]	10~15.5 [0.394~0.610]	8~12 [0.315~0.472]	8.5~14 [0.335~0.551]	9~15 [0.354~0.591]	10~16 [0.394~0.630]	11~16 [0.433~0.630]	11~16.5 [0.433~0.650]			
Response differential : C	1.0 [0.039] or less				3.0 [0.118] or less	2.5 [0.098] or less							
Maximum sensing location	10 [0.394]												

Remark: The above table shows reference values.



Mounting Sensor Switch

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the position shown in the diagram below (figures in the tables are reference values), the magnet reaches the sensor switch's maximum sensing location at the end of the stroke.

Solid state type

	Double ac	tin	g ty	/pe									mm	[in.]
Code	Bore	6	8	10	12	16	20	25	32	40	50	63	80	100
x	Standard type	7.2 [0.283]	8 [0.315]	8.3 [0.327]	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]		-	12.5 [0.492]	-	20 [0.787]	25 [0.984]
^	With bumper (-R)	_	_	_	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]			15 [0.591]	20 [0.787]	25 [0.984]
	Standard type	1 [0.039]	0.3 [0.012]	1 [0.039]	4 [0.157]	4 [0.157]	7.5 [0.295]	9 [0.354]			14.5 [0.571]	-	20 [0.787]	25 [0.984]
Y	With bumper (-R)	_	_	_	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]		11.5 [0.453]	-	20 [0.787]	25 [0.984]

Single acting push type

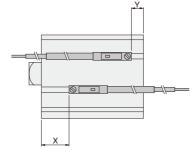
Code

х

act	ing	pus	n ty	pe					m	m [in.]
Bore	6	8	10	12	16	20	25	32	40	50
	17.2						14.5 [0.571]			
		0.0		4				0.5		10.5

Y					10.5 [0.413]

(Single acting pull type mm [in]													
	Code	6	8	10	12	16	20	25	32	40	50			
	х	7.2 [0.283]	8 [0.315]	8.3 [0.327]	7 [0.276]	7 [0.276]	11 [0.433]			14.5 [0.571]				
	Y	11 [0.433]	10.3 [0.406]		9 [0.354]	9 [0.354]	12.5 [0.492]			15.5 [0.610]				

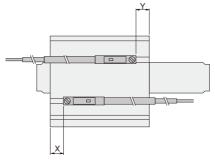

Reed switch type

•	Double acting type mm [in.]												
Code	Code Bore 12 16 20 25 32 40 50 63												
x	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	15.5 [0.610]	20.5 [0.807]		
~	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]	11.5 [0.453]	11 [0.433]	12 [0.472]	11 [0.433]	10.5 [0.413]	15.5 [0.610]	20.5 [0.807]		
v	Standard type	-0.5 [-0.020]	-0.5 [-0.020]	3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]	15.5 [0.610]	20.5 [0.807]		
Y	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	11.5 [0.453]	15.5 [0.610]	20.5 [0.807]		

• Single acting push type mm [in											
Code	12	16	20	25	32	40	50				
x	10.5	10.5	9.5	10	11	13	12.5				
	[0.413]	[0.413]	[0.374]	[0.394]	[0.433]	[0.512]	[0.492]				
Y	-3.5	-3.5	0	1	2	3	6				
	[-0.138]	[-0.138]	[0]	[0.039]	[0.079]	[0.118]	[0.236]				

Single ac	Single acting pull type mm [in.]													
Bore 12 16 20 25 32 40														
x	2.5	2.5	6.5	6.5	9	10	8							
	[0.098]	[0.098]	[0.256]	[0.256]	[0.354]	[0.394]	[0.315]							
Y	4.5	4.5	8	9.5	9	11	10							
	[0.177]	[0.177]	[0.315]	[0.374]	[0.354]	[0.433]	[0.394]							

Square rod cylinders with magnet



	Solid state type												
	Double acting type mm [in												
Code	Bore	20	25	32	40	50	63						
x	Standard type	17.5 [0.689]	17.5 [0.689]	22.5 [0.886]	24.5 [0.965]	27.5 [1.083]	30 [1.181]						
^	With bumper (-R)	21.5 [0.846]	22.5 [0.886]	24.5 [0.965]	26.5 [1.043]	30.5 [1.201]	30 [1.181]						
v	Standard type	10 [0.394]	9 [0.354]	14 [0.551]	14.5 [0.571]	14.5 [0.571]	16 [0.630]						
Y	With bumper (-R)	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	11.5 [0.453]	16 [0.630]						

Reed switch type Juble

	Double acting type mm [in.]												
Code	Bore	20	25	32	40	50	63						
x	Standard type	13 [0.512]	13 [0.512]	18 [0.709]	20 [0.787]	23 [0.906]	25.5 [1.004]						
^	With bumper (-R)	17 [0.669]	18 [0.709]	20 [0.787]	22 [0.866]	26 [1.024]	25.5 [1.004]						
v	Standard type	5 [0.197]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]						
Y	With bumper (-R)	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	11.5 [0.453]						

• Double rod cylinders with magnet

Solid state type

	Double acting type mm [in.]													[in.]	
	Bore 6 8 10 12 16 20 25 32 40 50 63											63	80	100	
	v	Standard type	7.2 [0.283]	8 [0.315]	8.3 [0.327]	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]		-	-		20.5 [0.807]	25 [0.984]
	х	With bumper (-R)	-	-	_	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]			-	20.5 [0.807]	25 [0.984]
	Y	Standard type	5.5 [0.217]	5.8 [0.228]	6 [0.236]	10 [0.394]	10 [0.394]		14.5 [0.571]						
		With bumper (-R)	-	_	_	12 [0.472]	12 [0.472]	15 [0.591]	14.5 [0.571]	6.5 [0.256]				26.5 [1.043]	

Single act	Single acting type mm [in.]													
Code	12	16	20	25	32	40	50							
х	15	15	14	14.5	15.5	17.5	16.5							
	[0.591]	[0.591]	[0.551]	[0.571]	[0.610]	[0.689]	[0.650]							
Y	7	7	11	11	13.5	14.5	12.5							
	[0.276]	[0.276]	[0.433]	[0.433]	[0.531]	[0.571]	[0.492]							

Reed switch type

	Double acting type mm [in.]													
Code	Bore	12	16	20	25	32	40	50	63	80	100			
x	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	16 [0.630]	20.5 [0.807]			
^	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]	11.5 [0.453]	11 [0.433]	12 [0.472]	9.5 [0.374]	10.5 [0.413]	16 [0.630]	20.5 [0.807]			
v	Standard type	5.5 [0.217]	5.5 [0.217]	9.5 [0.374]	10 [0.394]	11 [0.433]	13 [0.512]	12 [0.472]	13.5 [0.531]	22 [0.866]	27 [1.063]			
Y	With bumper (-R)	7.5 [0.295]	7.5 [0.295]	10.5 [0.413]	10 [0.394]	2 [0.079]	11 [0.433]	10.5 [0.413]	13.5 [0.531]	22 [0.866]	27 [1.063]			

• Single acting type mm [in.] Code Bore 12 16 20 25 32 40 50 13 [0.512] 10.5 [0.413] 10.5 [0.413] 9.5 10 11 12 х [0.374] [0.394] [0.433] [0.472] 2.5 2.5 6.5 6.5 9 10 8 [0.098] [0.098] [0.256] [0.256] [0.354] [0.394] [0.315] Υ

201

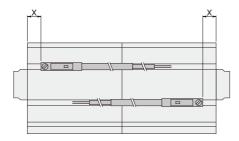
Tandem cylinders with magnet

Y Υ

Solid state type

	Double acting type mm [in.												
Co	Bore	12	16	20	25	32	40	50	63	80	100		
,	Standard type	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]	13.5 [0.531]	14.5 [0.571]		15 [0.591]	20 [0.787]	25 [0.984]		
,	With bumper (-R)	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]	16.5 [0.650]		15 [0.591]	20 [0.787]	25 [0.984]		
		4 [0.157]	4 [0.157]	7.5 [0.295]	9 [0.354]	8.5 [0.335]	10.5 [0.413]	-	16 [0.630]	20 [0.787]	25 [0.984]		
)	With bumper (-R)	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	11.5 [0.453]	16 [0.630]	20 [0.787]	25 [0.984]		

Sing	Single acting push type mm [in.]												
Code	Code Bore 12 16 20 25 32 40												
x		15 [0.591]	15 [0.591]	14 [0.551]	14.5 [0.571]	15.5 [0.610]	17.5 [0.689]	16.5 [0.650]					
Y	Y		1 [0.039]	4.5 [0.177]	5.5 [0.217]	6.5 [0.256]	7.5 [0.295]	10.5 [0.413]					

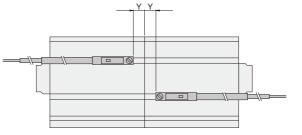

Reed switch type

	Double acting type mm [in.]													
Cod	eBore	12	16	20	25	32	40	50	63	80	100			
v	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]					
х	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]	11.5 [0.453]	11 [0.433]	12 [0.472]	11 [0.433]	10.5 [0.413]					
	Standard type	-0.5 [-0.020]		3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]					
Y	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	11.5 [0.453]	15.5 [0.610]				

• Single acting push type

Single ac	ting p	ush ty	ре				mm [in.]
Code	12	16	20	25	32	40	50
x	10.5	10.5	9.5	10	11	13	12
	[0.413]	[0.413]	[0.374]	[0.394]	[0.433]	[0.512]	[0.472]
Y	-3.5	-3.5	0	1	2	3	6
	[-0.138]	[-0.138]	[0]	[0.039]	[0.079]	[0.118]	[0.236]

Dual stroke cylinders with magnet

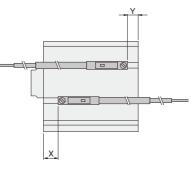


Solid state type

	Double ac	ting	typ	е						m	m [in.]
Code	Bore	12	16	20	25	32	40	50	63	80	100
x	Standard type	7 [0.276]	7 [0.276]	11 [0.433]	11 [0.433]	13.5 [0.531]			15 [0.591]	20 [0.787]	25 [0.984]
^	With bumper (-R)	10 [0.394]	10 [0.394]	15 [0.591]	16 [0.630]	15.5 [0.610]	16.5 [0.650]	14 [0.551]	15 [0.591]	20 [0.787]	25 [0.984]
v	Standard type	4	4	7.5	9	8.5	10.5	14.5	16 [0.630]	20	25
Y	With bumper (-R)	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]	8.5 [0.335]	13.5 [0.531]	16 [0.630]	20 [0.787]	25 [0.984]

Single a	Single acting push type mm [in.]													
Code	Bore 12	16	20	25	32	40	50							
x	15	15	14	14.5	15.5	17.5	16.5							
	[0.591]	[0.591]	[0.551]	[0.571]	[0.610]	[0.689]	[0.650]							
Y	1	1	7.5	5.5	6.5	7.5	10.5							
	[0.039]	[0.039]	[0.295]	[0.217]	[0.256]	[0.295]	[0.413]							

Single act	ing p	ull typ	е				mm [in.]
Code	12	16	20	25	32	40	50
Y	7	7	11	11	13.5	14.5	12.5
~	[0.276]	[0.276]	[0.433]	[0.433]	[0.531]	[0.571]	[0.492]
v	9	9	12.5	14	13.5	15.5	14.5
1	[0.354]	[0.354]	[0.492]	[0.551]	[0.531]	[0.610]	[0.571]

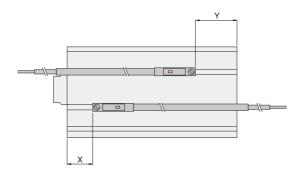

Reed switch type

•	Double acting type mm [in.]													
Code	Bore	12	16	20	25	32	40	50	63	80	100			
v	Standard type	2.5 [0.098]	2.5 [0.098]	6.5 [0.256]	6.5 [0.256]	9 [0.354]	10 [0.394]	8 [0.315]	10.5 [0.413]	15.5 [0.610]	20.5 [0.807]			
х	With bumper (-R)	5.5 [0.217]	5.5 [0.217]	10.5 [0.413]	11.5 [0.453]	11 [0.433]	12 [0.472]	9.5 [0.374]	10.5 [0.413]	15.5 [0.610]	20.5 [0.807]			
v	Standard type	-0.5 [-0.020]	-0.5 [-0.020]	3 [0.118]	4.5 [0.177]	4 [0.157]	6 [0.236]	10 [0.394]	11.5 [0.453]	15.5 [0.610]				
Y	With bumper (-R)	1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	9 [0.354]	11.5 [0.453]	15.5 [0.610]	20.5 [0.807]			

Single acting push type mm [in.]													
Code	40	50											
x	10.5	10.5	9.5	10	11	13	12						
	[0.413]	[0.413]	[0.374]	[0.394]	[0.433]	[0.512]	[0.472]						
Y	-3.5	-3.5	3	1	2	3	6						
	[-0.138]	[-0.138]	[0.118]	[0.039]	[0.079]	[0.118]	[0.236]						

Single act	ing p	ull typ	е				mm [in.]
Code	32	40	50				
х	2.5	2.5	6.5	6.5	9	10	8
	[0.098]	[0.098]	[0.256]	[0.256]	[0.354]	[0.394]	[0.315]
Y	4.5	4.5	8	9.5	9	11	10
	[0.177]	[0.177]	[0.315]	[0.374]	[0.354]	[0.433]	[0.394]

•Lateral load resistant cylinders with magnet

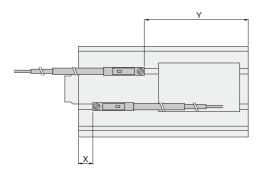

Solid state type

Double ac	Double acting type mm [in.]													
Code	12	16	20	25	32	40	50	63	80	100				
x	10 [0.394]	10 [0.394]	15 [0.591]		15.5 [0.610]									
Y	6 [0.236]	6 [0.236]	8.5 [0.335]	9 [0.354]	6.5 [0.256]		11.5 [0.453]							

-	Reed switch type Double acting type mm [in.]													
Code	<u> </u>	Bore	12	16	20	25	32	40	50	63	80	100		
	х		5.5 [0.217]	5.5 [0.217]		11.5 [0.453]		12 [0.472]	11 [0.433]	13 [0.512]	22 [0.866]	27 [1.063]		
	Y		1.5 [0.059]	1.5 [0.059]	4 [0.157]	4.5 [0.177]	2 [0.079]	4 [0.157]	7 [0.276]	9 [0.354]	14 [0.551]	19 [0.748]		

203

Long stroke cylinders with magnet


Solid state type

Double ac	Double acting type mm [in.														
Code	12	16	20	25	32	40	50	63	80	100					
x	15 [0.591]	15 [0.591]	20 [0.787]	21 [0.827]		21.5 [0.846]									
Y	12 [0.472]	12 [0.472]		14.5 [0.571]											

Reed switch type

• Do	Double acting type mm [in.]													
Code	<u> </u>	Bore	12	16	20	25	32	40	50	63	80	100		
	Х			10.5 [0.413]				17 [0.669]	16 [0.630]	18 [0.709]	27 [1.063]	32 [1.260]		
	Y		7.5 [0.295]	7.5 [0.295]	10.5 [0.413]	10 [0.394]	9 [0.354]	11 [0.433]	8 [0.315]	9 [0.354]	14 [0.551]	19 [0.748]		

• End keep cylinder with magnet

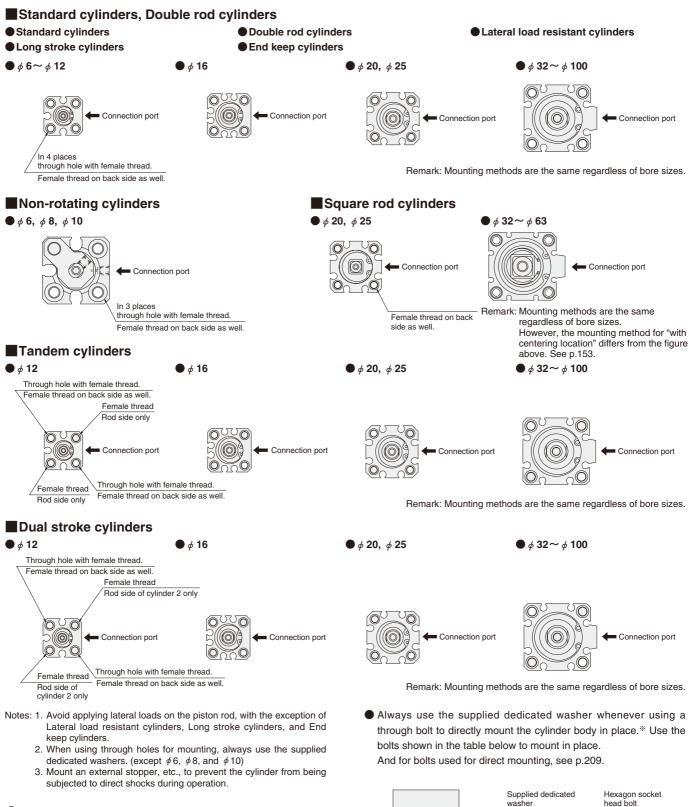
Solid state type

Head side end keep mm [in									
Code	16	20	25	32	40	50	63		
х	15.5	20.5	21.5	20.5	21.5	20.5	22.5		
	[0.610]	[0.807]	[0.846]	[0.807]	[0.846]	[0.807]	[0.886]		
Y	36.5	34.5	34.5	43.5	45.5	51.5	54.5		
	[1.437]	[1.358]	[1.358]	[1.713]	[1.791]	[2.028]	[2.146]		

Reed switch type

	Head side end keep mm [in.]									
C	ode	16	20	25	32	40	50	63		
	х	11 [0.433]	16 [0.630]	17 [0.669]	16 [0.630]	17 [0.669]	16 [0.630]	16 [0.630]		
	Y	32 [1.260]	30 [1.181]	30 [1.181]	39 [1.535]	41 [1.614]	47 [1.850]	50 [1.969]		

Solid state type


Rod side end keep								
Code	16	20	25	32	40	50	63	
х	35.5	35.5	36.5	45.5	46.5	55.5	57.5	
	[1.398]	[1.398]	[1.437]	[1.791]	[1.831]	[2.185]	[2.264]	
Y	11.5	14.5	14.5	13.5	15.5	11.5	13.5	
	[0.453]	[0.571]	[0.571]	[0.531]	[0.610]	[0.453]	[0.531]	

Reed switch type

Rod side end keep mm [in.]									
Code	16	20	25	32	40	50	63		
x	31	31	32	41	42	51	53		
	[1.220]	[1.220]	[1.260]	[1.614]	[1.654]	[2.008]	[2.087]		
Y	7	10	10	9	11	7	9		
	[0.276]	[0.394]	[0.394]	[0.354]	[0.433]	[0.276]	[0.354]		

Body mounting

Jig cylinder mounting holes include both through holes with female mounting thread, and dedicated female mounting threads, for a variety of mountings. For details, see the diagrams below.

Tightening thread of the end of piston rod

Since a tool (thin wrench) has been prepared for holding the piston rod when tightening the rod end thread, consult us.

Bore size	6	8	10	12	16	20	25	32	40	50	63	80	100
mm [in.]	[0.236]	[0.315]	[0.394]	[0.472]	[0.630]	[0.787]	[0.984]	[1.260]	[1.575]	[1.969]	[2.480]	[3.150]	[3.940]
Hexagon socket head bolt nominal size	МЗ	M3	M3	M3	M3	M3	M4	M4	M5	M6	M6	M8	M10

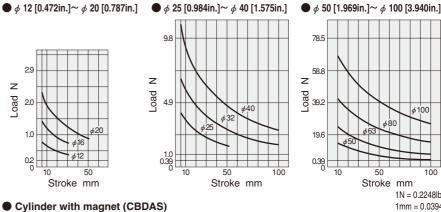
Bracket mounting

- Foot mounting brackets cannot be installed on tandem cylinders and dual stroke cylinders.
- Flange mounting brackets cannot be installed on the head side of tandem cylinders and the stroke 1 side of dual stroke cylinders.
- Clevis mounting brackets cannot be installed on anything except for lateral load resistant cylinders, long stroke cylinders, and end keep cylinders.

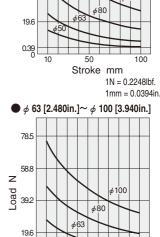
Non-standard stroke

In most cases, body cutting is used for the manufacturing for non-standard strokes. However, body cutting is not used for strokes of less than 5mm for ϕ 12 [0.472in.]~ \(\phi\) 40 [1.575in.], and strokes of less than 10mm for ϕ 50 [1.969in.] $\sim \phi$ 100 [3.940in.]. The collar packed is used for these cases. Moreover, sizes $\phi \in [0.236in.]$ $\sim \phi 10$ [0.394in.] are collar packed only. For delivery, consult us.

Rod side end keep cylinders cannot be collar packed.


- Dimensions
- 1. Additional strokes obtained by body cutting remain classed as non-standard strokes.
- 2. Additional strokes obtained by collar packed are classed as standard strokes in the longer one.

Lateral Load


- Keep the lateral load on the rod end of the lateral load resistant cylinder, long stroke cylinder, and end keep cylinder, at or below the values shown in the graphs below.
 - Note: Avoid applying lateral load on any cylinder types other than the lateral load resistant cylinder, long stroke cylinder, and end keep cylinder.

Lateral load resistant cylinders

Standard type (CBDA)

Long stroke cylinders, End keep cylinders ● Standard type (CCDA,CCDAK) ● φ 25 [0.984in.]~ φ 50 [1.969in.]

● φ 12 [0.472in.]~ φ 20 [0.787in.] ● φ 25 [0.984in.]~ φ 40 [1.575in.]

3.9

2.9

2.0

1.0

02

30

150

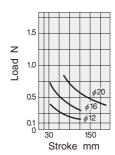
Stroke mm

z

Load

● φ 12 [0.472in.]~ φ 20 [0.787in.]

29


1.0

0.2

n.

z

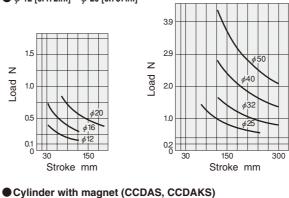
Load 2.0

1.5

1.0

05

0.1


30

150

Stroke mm

z

Load

39.2

50

Stroke mm 1N = 0.2248lbf.

• *φ* 63 [2.480in.]~ *φ* 100 [3.940in.]

100

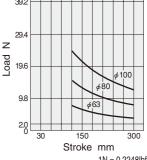
1mm = 0.0394in.

0.39

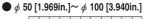
39.2

29.

19.6


9.8

2.0 30


z

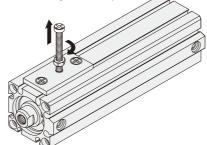
300

10

Single acting cylinders

Standard cylinders single acting push type Standard cylinders single acting pull type Double rod cylinders single acting type Tandem cylinders single acting push type Dual stroke cylinders single acting push type Dual stroke cylinders single acting pull type

If in the above types' application, air is being continuously applied from a connection port, and the spring remains in a compressed state for long periods of time, the piston may sometimes fail to return to its original position even after the air is exhausted. If equipment is to be used in this way over long periods of time, consult us.


End keep cylinder

Control circuit

- For control of Jig end keep cylinders, we recommend the use of 2-position, 4-, 5-port valves. Avoid the use of a control circuit of ABR connections (exhaust centers) with 3position valves that exhaust air from 2 ports.
- Always use meter-out control for speed control. Meter-in control may result in failure of the locking mechanism to release.
- Notes: 1. It is dangerous to supply air to a connection port on a side with a locking mechanism while already exhausted, because the piston rod could suddenly extend (retract). In addition, it could also cause galling of the lock piston and piston rod, resulting in defective operation. Always supply air to the connection port on the opposite side to ensure back pressure is applied.
 - 2. When restarting operations after air has been exhausted from the cylinder due to completion of operations or to an emergency stop, always start by supplying air to the connection port on the opposite side of the locking mechanism.
 - Connect the valve port A (NC) to the connection port on the side with the locking mechanism.

Manual operation of the locking mechanism

While the locking mechanism is normally released automatically through cylinder operations, it can also be released manually. For manual release, insert an $M3 \times 0.5$ screw that has 30mm [1.18in.] below head length into the manual override opening, thread it in about 3 turns into the internal lock piston, and then pull up the screw. To maintain the manual override for adjustment, etc., thread the locknut onto the screw and, with the locking mechanism in a released state, tighten the locknut against the cylinder.

- Notes: 1. It is dangerous to release the lock when a load (weight) is present on the piston rod, because it may cause a sudden fall or cause the unintended piston rod's extension (retraction). In this case, always supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.
 - 2. If the locking mechanism cannot easily be released even with manual override, it could be the result of galling of the lock piston and piston rod. In this case, supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.
 - 3. Because water, oil, dust, etc., entering via the manual override opening could be a cause of defective locking or other erratic operation, use a cover, etc., for protection when using in locations subject to dripping water, dripping oil, or to large amounts of dust, etc.

Sensor switch

In the standard cylinder, a magnet for the sensor switch is not built-in.

To install a sensor switch, a cylinder with a built-in magnet for the sensor switch is required.

- Notes: 1. For the sensor switch mounting location and moving ranges, see p.199.
 - Contact protection measures are required for connecting inductive loads to reed sensor switches or for when capacitive surges are generated. For contact protection measures, see p.1566.

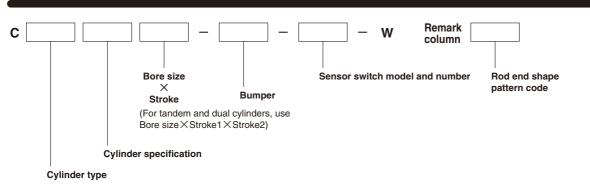
Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the cylinder. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

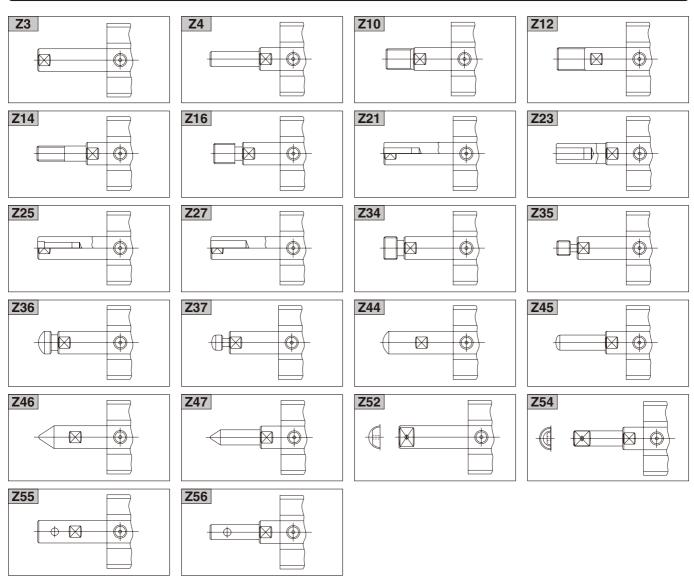
Atmosphere

- If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.
- 2. The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.
 - Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Lubrication


The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (**ISO VG32**) or equivalent.

Avoid using spindle oil or machine oil.


OPTIONAL ROD END SHAPE PATTERNS

Use an order form of rod end pattern and fill the items on the selected one from among 22 types of optional patterned shapes to obtain made-to-order cylinders of non-standard rod end shapes. The optional rod end shapes can be applied to the entire Jig Cylinders C Series. For the order form containing the optional patterned shapes, contact us. (Except ϕ 6, ϕ 8, ϕ 10)

Order Codes

Piston Rod End Shape Pattern Diagrams (22 Types)

MOUNTING SCREWS FOR JIG CYLINDERS

• Some types of mounting screws specifically for the Jig Cylinders are available.

Use the order codes below to place orders.

		_	_	(
List	of	Order	Codes	(

1 Mounting screw type: JIS B 1176 Hexagon socket head cap screws 2 Surface treatment: Nickel plated

Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws		Applicable cylinde bore size mm [in.]
	CRK124	M3×25		-	
	CRK125	M3×30			
6 [0.236]	CRK126	M3×35	2		
8 [0.315]	CRK127	M3×40	2		
10 [0.394]	CRK128	M3×45			
	CRK129	M3×50			
12 [0.472]	CRK130	M3×30			
16 [0.630]	CRK131	M3×35			80 [3.150]
20 [0.787]	CRK132	M3×40	4		00[0.100]
	CRK133	M3×45			
	CRK134	M3×50			
	CRK135	M4×30	_		
	CRK136	M4×35	_		
	CRK137	M4×40	_		
25 [0 094]	CRK138	M4×45	_		
25 [0.984]	CRK139	M4×50	4	-	
32 [1.260]	CRK140	M4×55	_		
	CRK141	M4×60	_		
	CRK142	M4×65	_		
	CRK143	M4×70 M4×75	_		
	CRK144	M4×75 M5×35			
	CRK145 CRK146	M5×35 M5×40			
	CRK146	M5×40 M5×45	_		100 [3.940]
	CRK147	M5×50	_		100 [3.940]
	CRK149	M5×55			
	CRK150	M5×60			
	CRK151	M5×65			
40 [1.575]	CRK152	M5×70	4		
	CRK153	M5×75			
	CRK154	M5×80			
	CRK155	M5×85		-	
	CRK156	M5×90			
	CRK157	M5×100			
	CRK158	M5×110			
	CRK159	M6×40			
	CRK160	M6×45			
	CRK161	M6×50			
	CRK162	M6×55			
	CRK163	M6×60			
	CRK164	M6×65	_		
	CRK165	M6×70			
50 [1.969]	CRK166	M6×75	- 4		
63 [2.480]	CRK167	M6×80			
00 [2.400]	CRK168	M6×85			
	CRK169	M6×90			
	CRK170	M6×100			
	CRK171	M6×110			
	CRK172	M6×120	_		
	CRK173	M6×130	_		
	CRK174	M6×140	_		
	CRK175	M6×150			

Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws
	CRK176	M8×60	
	CRK177	M8×65]
	CRK178	M8×70]
	CRK179	M8×75]
	CRK180	M8×80]
	CRK181	M8×85	1
	CRK182	M8×90	1
00 [0 1 0]	CRK183	M8×95	
80 [3.150]	CRK184	M8×100	4
	CRK185	M8×110	1
	CRK186	M8×120	1
	CRK187	M8×130	1
	CRK188	M8×140	1
	CRK189	M8×150	1
	CRK190	M8×160	1
	CRK191	M8×170	1
	CRK192	M10×65	
	CRK193	M10×70	1
	CRK194	M10×75	1
	CRK195	M10×80	1
	CRK196	M10×85	1
	CRK197	M10×90	1
	CRK198	M10×95	1
100 [3.940]	CRK199	M10×100	4
	CRK200	M10×110	1
	CRK201	M10×120	1
	CRK202	M10×130	1
	CRK203	M10×140	1
	CRK204	M10×150	1
	CRK205	M10×160	1
	CRK206	M10×170	1